Assault on Storage Density of 1 Terabit per Square Inch and Beyond

Presenter

Presentation Menu

Abstract

The areal density in magnetic recording has surpassed 50 Gbit/in2 in products and 100 Gbit/in2 in laboratory demonstrations. These densities have been achieved with recording media composed of Co-alloy nanostructured materials with horizontal orientation of the magnetization (longitudinal recording). Grain sizes are 8 to 10 nm and grain size distributions are near 20% (standard deviation divided by the mean). Going much beyond 100 Gbit/in2 requires magnetically harder materials with smaller, thermally stable grains (5 to 8 nm) and tighter distributions (< 15%). Experiments indicate that this may be possible in perpendicular recording, where a soft magnetic imaging layer is used to enhance the write field and enable such grains to be switched. Basic technology demonstrations of about 110 Gbit/in2 have already been reported, and modeling suggests that extensions to about 1 Tbit/in2 should be possible using that technology.

Going much beyond Tbit/in2, however, will require more drastic changes of heads and media. One of the fundamental limitations relates to the media sputter fabrication process, which may not allow the tight grain size and magnetic dispersions required in models. So-called "self-organized magnetic arrays" (SOMA) of chemically synthesized Fe-Pt nanoparticles are being explored as alternatives. These structures not only show extremely tight size distributions (< 5%) but are also magnetically much harder than current Co alloys. Writing will require temporal heating and cooling in a magnetic field, as in heat-assisted magnetic recording (HAMR). A combination of SOMA and HAMR may eventually lead to recording on a single particle per bit, with ultimate densities near 50 Tbit/in2 (with 10 years storage time, ambient temperature, and Fe-Pt type anisotropies).