Nanocomposite Magnets for Energy Applications

Presenter

Presentation Menu

Abstract

Recent USDOE workshops highlight the need for advanced soft magnetic materials leveraged in novel designs of power electronic components and systems for power conditioning and grid integration. Similarly soft magnetic materials figure prominently in applications in electric vehicles and high torque motors. Dramatic weight and size reductions are possible in such applications by hold potential for applications in active magneocaloric cooling of such devices. Bulk and thin film soft magnet sensors can contribute to the search for oil and critical materials. Opportunities for state of the art soft magnetic to impact such applications have been furthered by investment by USDOD Programs and other world wide efforts to advance these materials for applications in military electric vehicle technologies.

This talk will focus on the framework for developing high frequency (f) magnetic materials for grid integration of renewable energy sources bridging the gap between materials development, component design, and system analysis. Examples from recent efforts to develop magnetic technology for lightweight, solid-state, medium voltage (>13 kV) energy conversion for MW-scale power applications will be illustrated. The potential for materials in other energy applications (motors, cooling, sensors, RF metal joining, etc.) will also be introduced. The scientific framework for nanocomposite magnetic materials that make high frequency components possible will be discussed in terms of the materials paradigm of synthesis à structure à properties à performance. In particular, novel processing and the control of phase transformations and ultimately nanostructures has relied on the ability to probe structures on a nanoscale. Examples of nanostructural control of soft magnetic properties will be illustrated.