Wall Watching: The Progress of Domains in Small Elements

Presenter

Presentation Menu

Abstract

An understanding of magnetization processes is of direct interest to physicists and is crucial for developing high performance magnetic devices. The domain structure, and the way it changes under the influence of a magnetic field, depends not only on basic material parameters but also on the physical shape and size of the magnetic material. Thus, quite different domain configurations are found in bulk materials, thin films, and small magnetic elements made from the same material. The same is true of domain walls, whose structure can change markedly as one or more of the dimensions of the material under investigation moves into the sub-micrometer regime. Given the extreme miniaturization that occurs in magnetic storage and sensing devices, as detailed a knowledge as possible of the magnetization configuration in small elements is essential.

For many years, the Lorentz imaging mode of transmission electron microscopy (TEM) has yielded high resolution magnetic images of domains and walls in magnetic films and elements. Since only a modest amount can be learned from a single image of an element, however, recent advances -- whereby in situ magnetizing capabilities within the TEM have been enhanced -- have made a considerable impact.

In this talk I will illustrate the radical changes that occur as the dimensions of magnetic elements are reduced from a few micrometers to tens of nanometers. While size is a very important parameter, the detailed shape can also exert a major role, and changes here offer a way of tailoring properties to meet specific requirements. Other important influences are coupling between layers (if the element is formed from a magnetic multilayer) and the nature of the substrate. It is hoped that many of the images, as well as revealing in a very direct way how the magnetization process proceeds, will appeal to the aesthetics of the audience.